Cyclic tensile strain enhances human mesenchymal stem cell Smad 2/3 activation and tenogenic differentiation in anisotropic collagen-glycosaminoglycan scaffolds.
نویسندگان
چکیده
Stem cell research arose from the need to explore new therapeutic possibilities for intractable and lethal diseases. Although musculoskeletal disorders are basically nonlethal, their high prevalence and relative ease of performing clinical trials have facilitated the clinical application of stem cells in this field. However, few reliable clinical studies have been published, despite the plethora of in vitro and preclinical studies in stem cell research for regenerative medicine in the musculoskeletal system. Stem cell therapy can be applied locally for bone, cartilage and tendon regeneration. Candidate disease modalities in bone regeneration include large bone defects, nonunion of fractures, and osteonecrosis. Focal osteochondral defect and osteoarthritis are current targets for cartilage regeneration. For tendon regeneration, bone-tendon junction problems such as rotator cuff tears are hot topics in clinical research. To date, the literature supporting stem cell-based therapies comprises mostly case reports or case series. Therefore, high-quality evidence, including from randomised clinical trials, is necessary to define the role of cell-based therapies in the treatment of musculoskeletal disorders. It is imperative that clinicians who adopt stem cell treatment into their practices possess a good understanding of the natural course of the disease. It is also highly recommended that treating physicians do not thrust aside the concomitant use of established measures until stem cell therapy is evidently proved worthy in terms of efficacy and cost. The purpose of this review is to summarise on the current status of stem cell application in the orthopaedic field along with the author's view of future prospects.
منابع مشابه
Effect of Uniaxial Tensile Cyclic Loading Regimes on Matrix Organization and Tenogenic Differentiation of Adipose-Derived Stem Cells Encapsulated within 3D Collagen Scaffolds
Adipose-derived mesenchymal stem cells have become a popular cell choice for tendon repair strategies due to their relative abundance, ease of isolation, and ability to differentiate into tenocytes. In this study, we investigated the solo effect of different uniaxial tensile strains and loading frequencies on the matrix directionality and tenogenic differentiation of adipose-derived stem cells ...
متن کاملDifferentiation of Human Mesenchymal Stem Cell into Chonderocyte Like Cells 3D Poly Lactic Acid Glycosaminoglycan (PCL-GAG) Nano Fibre Scaffold
Introduction: Failure of human body tissue and organs is believed to be one of the most important health problems all over the world. The great challenge for tissue engineers is to optimize suitable systems to separate, proliferate and differentiate the cells so that they can set out to create tissue by a harmonic 3-D growth. Therefore, the tissue engineers must provide an environment like the ...
متن کاملCyclic Tensile Strain Induces Tenogenic Differentiation of Tendon-Derived Stem Cells in Bioreactor Culture
Different loading regimens of cyclic tensile strain impose different effects on cell proliferation and tenogenic differentiation of TDSCs in three-dimensional (3D) culture in vitro, which has been little reported in previous literatures. In this study we assessed the efficacy of TDSCs in a poly(L-lactide-co-ε-caprolactone)/collagen (P(LLA-CL)/Col) scaffold under mechanical stimulation in the cu...
متن کاملMatrigel Enhances in vitro Bone Differentiation of Human Marrow-derived Mesenchymal Stem Cells
Objective(s) The use of co-culture cells as well as extra cellular matrix are among those strategies that have been employed to direct mesenchymal stem cell (MSC) bone differentiation in culture. In this regard, there is no study considering the effects of Matrigel on mesenchymal stem cell (MSC) in vitro bone differentiation. This was the subject of the present study. Materials and Methods ...
متن کاملInduction of Tenogenic Differentiation Mediated by Extracellular Tendon Matrix and Short-Term Cyclic Stretching
Tendon and ligament pathologies are still a therapeutic challenge, due to the difficulty in restoring the complex extracellular matrix architecture and biomechanical strength. While progress is being made in cell-based therapies and tissue engineering approaches, comprehensive understanding of the fate of progenitor cells in tendon healing is still lacking. The aim of this study was to investig...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European cells & materials
دوره 33 شماره
صفحات -
تاریخ انتشار 2017